PHYSICAL REVIEW E

VOLUME 50, NUMBER 6

DECEMBER 1994
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A molecular colloidal fluid of moderately nonspherical axisymmetric molecules interacting via a two-
site Yukawa potential is studied by the Brownian dynamics simulation method. The long-time transla-
tional self-diffusion coefficient and the rotational self-diffusion coefficient are calculated, at several con-
centrations and for different anisotropies of the one-particle diffusion tensor. The influence of the one-
particle diffusion tensor on the dynamical properties is studied. It is shown that the rotational motion of
the tracer molecule can be well described up to high volume fractions over a considerable time interval
by the rotational diffusion equation with a state dependent rotational diffusion coefficient.

PACS number(s): 61.20.Ja, 66.10.Cb, 82.70.Dd

I. INTRODUCTION

There are many inorganic and polymeric colloidal
dispersions that consist of rigid and compact nonspherical
particles, such as rodlike macromolecules. The macro-
particles interact through both interparticle colloidal
forces and hydrodynamic forces mediated via the contin-
uvum fluid. The macroparticles also receive fluctuating
Brownian forces which arise from the apparently random
thermal motion of the fluid. In colloidal dispersions, in
general, one is faced with a dauntingly large spread of im-
portant time scales that are well separated [1,2]. As a re-
sult, the dynamical behavior of a colloidal dispersion is
usually simplified in terms of a model consisting of large
and massive macroparticles or “Brownian” particles in a
continuum fluid medium.

Compared with colloids composed of spherical parti-
cles, the modeling of anisotropic colloid particles is less
well developed because of the complex interplay between
the different anisotropic interactions present in these
molecular suspensions. The intermolecular potential and
hydrodynamic interactions between nonspherical col-
loidal particles are considerably more complex than be-
tween spherical ones. In the case of rodlike particles, for
example, the potential interaction depends on the relative
orientations of the axes of the rods and on the distance
between their centers of mass. There is no well-
established functional form for such an interaction. For
hydrodynamic interactions, the situation is even worse.
Only very recently has this difficult aspect of suspensions
of nonspherical rigid particles been treated in a systemat-
ic way by means of Stokesian dynamics [3], which still ig-
nores Brownian forces. An alternative route is the bead
model approach [4,5]. The idea behind this method is
that each object (e.g., rodlike particle) is modeled by a set
of beads. The hydrodynamic interactions between these
objects is calculated as a superposition of those of the
beads (e.g., sphere) interactions. This approach is suit-
able for macromolecules or chain objects where bead-
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shaped subunits can easily be defined. Another advan-
tage of this approach, identifying the object as a collec-
tion of beads joined together, is the flexibility of the ob-
ject that can be taken into account. For a system of rigid
compact objects, the bead method seems to be less ap-
propriate and less efficient, because to get a good repre-
sentation of some convex shapes, like an ellipsoid or rod,
you would need many beads.

In the present report, we consider a model of interact-
ing linear rigid particles (colloidal molecules). It is as-
sumed that the particles interact via a site-site Yukawa
potential and the solvent is treated through a one-particle
diffusion matrix. Thus, the model accounts for anisotrop-
ic interparticle interactions and anisotropic friction but
ignores many-body hydrodynamic interactions. It is a
sufficiently simple model to start our investigations, as we
consider it to include some of the main features of sus-
pensions of short rodlike particles. In particular, it is a
reasonable model for a system in which the range of the
interparticle potential is much greater than that of the
solvent mediated hydrodynamic interactions. This is the
case in, for example, suspensions of charged rodlike parti-
cles. Recently, those systems have attracted considerable
attention. They have been studied by scattering experi-
ments [6,7] and various theoretical techniques [8-12].

Most of the numerical and theoretical studies to date
have been concentrated on structural properties and/or
properties of highly anisotropic rodlike particles. Few
real materials, however, consist of distinctly nonspherical
particles (e.g., very slender rods) and the need exists,
clearly, for investigations of suspensions of elongated par-
ticles with moderate aspect ratios. For such particles,
there is still little known about their dynamical behavior
at a molecular level, for example, the role of the one-
particle diffusion tensor on transport properties of the
suspension. Recently, for example, Felderhof and Jones
[13] have shown that in a colloidal suspension of spheres,
in the absence of hydrodynamic interactions, the short-
time decay of the rotational correlation function is
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governed by one-particle translational and rotational
diffusion coefficients.

In this report, we focus on tracer translational and ro-
tational diffusivities of moderately nonspherical interact-
ing colloidal molecules. Both properties are of a great
practical interest and are amenable to a range of experi-
mental techniques, e.g., the dynamic light and neutron
scattering, photon correlation spectroscopy, fluorescence
recovery after photobleaching [14]. In particular, we
study how the diffusivities depend on the one-particle
diffusion matrix, the nature of the interparticle forces and
on the density of the colloidal molecules. Similar studies
on the translational diffusivity have been undertaken, re-
cently by Lowen and Szamel for a fluid of the Yukawa-
type representing spherical colloidal suspensions [15]. As
the dynamical properties of molecule suspensions are
hardly amenable to any analytical treatment, Brownian
dynamics computer simulations are de facto the only
efficient approach to study these systems [16,17].

The algorithm for Brownian dynamic simulation is
presented in Sec. II together with a description of the
model and computational details. The simulation results
for the diffusion coefficients are given in Sec. III, and
summarized in Sec. IV.

II. BROWNIAN DYNAMICS SIMULATIONS

A. The model

We consider a system of N rigid linear molecules
suspended in an incompressible fluid of viscosity, 7,, and
using site-site direct (nonhydrodynamic) interactions.
For linear molecules the orientation is naturally defined
by a unit vector e along the molecular axis. The positions
of the sites are given in terms of their distances along this
axis from the center of mass. Thus, the interaction ener-
gy between two rigid linear molecules is a sum of pairwise
additive contributions from distinct sites a in molecule i
and b in molecule j,

V(fij,eiyej)=zzu(rab) ’ (1)
a b

where r,,=|r;, —r;| is the site-site distance. In our
model the molecular sites are equally spaced and the sep-
aration distance, L, is a variable parameter of the model.
The site-site potential is modeled by a Yukawa potential,

u(ry=Ugexp[—AMr—1)]/r , (2)

where U, sets the energy scale and A is the screening pa-
rameter characterizing the steepness and range of the po-
tential. The Yukawa potential, being the electrostatic
part of the Derjaguin-Landau-Verweg-Overbeek poten-
tial, is considered to give a good description of the in-
teraction of a dilute charge-stabilized spherical colloidal
suspension {1,18]. It has been used recently as a site-site
potential to model interactions between charged rodlike
particles [7,11,12].

As many-body hydrodynamic interactions are neglect-
ed in our model the hydrodynamic interaction of the mol-
ecule with the solvent is represented by a one-particle
diffusion tensor. For a nonspherical particle the diffusion
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tensor is a symmetric 6 X 6 matrix in position-orientation
space, which can be partitioned into 3X3 submatrices:
translational D, rotational D’, and coupling D°. The
number of nonzero components of the diffusion tensor is
determined by the symmetry of the particle [19]. For
rodlike molecule, the diffusion tensor contains four
nonzero components (two translational, D, Dl‘l, and two
rotational D7, Dﬁ, coefficients), the diffusion submatrices

are of the form [20]

D! 0 O
D*=|0 D! O |, 3)
0 o0 D

where * denotes ¢ or r, and D¢ is here a zero matrix (no
coupling occurs between translational and rotational
motion for this kind of the molecular symmetry). The
subscripts || and 1 denote parallel and perpendicular to
the molecular axis, respectively. In our model, the rota-
tional diffusion around the symmetry axis, Dﬁ, can be
safely ignored. (For linear molecules the torque is per-
pendicular to the molecular axis all the time.) The D]
coefficient will subsequently be denoted as D&.

The effective hydrodynamic anisotropy of a rodlike

particle can be characterized by the following factor,

_Dj—D;
- t + Dt ’ (4)
I 1

which changes from —1 (D} =0, no diffusivity parallel to
the rod axis) to +1 (D{ =0, no diffusivity normal to the
rod axis) and is zero when Dﬁ =D/ (isotropic diffusivity).
The one-particle diffusion tensor is available only for a
few molecular models, e.g., ellipsoids with the stick hy-
drodynamic boundary conditions [21,22]. In general,
values of the diffusion coefficients depend markedly on
the size and shape of the molecule, solvent properties
[23,24], and the hydrodynamic boundary conditions used
in their evaluation [25-27]. As a result the dynamical
properties of the suspension are strongly model depen-
dent [27] and a systematic study of their dependence on
the one-particle diffusion tensor is desirable. To explore
this dependence, we shall use several different values of
D& and y.

In order to study a system of particles that can rotate
in time, the diffusion tensor in Eq. (3) has to be
transformed from the molecular-fixed frame to the
laboratory-fixed frame. This transformation leads to the
following form for the translational diffusion tensor D7 in
the laboratory-fixed frame:

Dgg=D{8,5tees(Dj—D}), (5)

where e, is the a component of the unit vector e and 8,4
is the Kronecker 8. As the molecule rotates, the tensor
DT changes in time. This means that the translational
motion of the rodlike particle, therefore, depends on its
orientation, which is a result of different diffusivities in
the directions parallel and normal to the rod axis. The
expression in Eq. (5) can be rearranged into a form that
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has a part of the tensor that is independent of molecular
orientations:

Dis=D8,5+D 4(eqeg—1/38,4) , 6)

where D ,=(D;—D/) is the anisotropic component of
the translational diffusion coefficient and
D;=(D|+2D1)/3 is the isotropic translational diffusion
coefficient.

If the orientations of the molecule are randomly distri-
buted (which is the case in an isotropic fluid) the average
value of the D tensor is

(D1)=D;8,4, (7

and its correlation functions can be expressed in the fol-
lowing way:

(DL ODTy(1))
) D5
=D18a‘9§75+1—5<f’2(e(0)‘€(l’)))

X [8ay8ps + 84585, — $8ugdys] » ®)

where P,(x) is the second-order Legendre polynomial.
Although the derivation of Eq. (8) is the same as, for ex-
ample, the molecular polarizibility tensor [28], we think
the use of this expression is different in the context of col-
loidal systems.

B. The algorithm

An algorithm for simulating the Brownian motion of
an assembly of interacting spherical particles was pro-
posed by Ermak and McCammon [16]. Dickinson ex-
tended the algorithm to a form that incorporates rotation
of the particles explicitly in the equations of motion
[20,29]: The algorithm updates the displacements and
orientations in time steps of, Az, and for our system it can
be written as follows:

Arg=225 S Do+ b7, ©)
BY B

At
Agia=7 700 Tiat8¢ia (10)

where i=1,...,N labels the molecules and «, B indi-
cates the Cartesian coordinates (x,y,z or 1,2,3). F;, and
T; o -are the net force and torque, respectively, acting in
the a direction on particle, i. The temperature is denoted
by T and kj is the Boltzmann constant. d¢;, is a random
orientational displacement which is sampled from a
Gaussian distribution of zero mean and variance,

(8g2)=2D&A¢ (11)

where D¥ is the rotational diffusion coefficient in the lim-
it of infinite dilution. Similarly, 8r;, denotes a random
displacement of the molecular center of mass. In this
case, however, the Cartesian components of the displace-
ment vector dr, for a ¥iven molecule, are correlated in ac-
cordance with the D" tensor. These have to be sampled
from a multivariate Gaussian distribution with zero mean

A. C. BRANKA AND D. M. HEYES 50

and the variance-covariance matrix given by
(8r,,8r;g) =2D At , (12)

which can be obtained from a set of three Gaussian ran-
dom numbers, X ,, according to the following procedure
[29],

a

dro= 3 04pXp (13)
B=1
a1 172
=|DL,— 3 ol, (14)
y=1
1 T Bl
0a3=:7—- D= 3 04y0p, | (@>B) (15)
BB ry=1
(X, )=0, (X,Xg)=28,6A¢, (16)

where a, B, ¥y =1,2,3 and the molecular index i has been
omitted.

All quantities quoted here are in dimensionless units,
using o, 02/D, and U, /o as the characteristic values for
length, time and forces, respectively. Temperature is in
kg /U, and all the translational diffusion coefficients are
in Dy =kgT /6mo 1y, where 7 is the solvent viscosity.

In the Dickinson et al. [29] algorithm the rotational
displacements, Ag;,, are angular rotations of the particle
i about the laboratory-fixed x, y, and z axes. The time
evolution of the unit vector e is obtained by using the
Cartesian rotational transformation matrices

e(t+A1)=A, A, A,e(1), 17
where
1 0 0
A, = |0 cos(Ap,) —sin(Ag,) |, (18)
0 sin(Ag,) cos(Ag,)
cos(Ap,) O sin(Ag,)
A4,= 0 1 0 , (19)

—sin(Ag,) 0 cos(Agp,)

cos(Agp,) —sin(Ag,) O
A,= |sin(Ap,) cos(Ag,) O], (20
0 0 1

are the rotation matrices corresponding to a rotation of
Ag, about the x axis, Ap, about the y axis, and Ag,
about the z axis, respectively As the matrices are not
commutable a small error is introduced into the algo-
rithm, but for small rotational displacements it appears
to be statistically irrelevant [30].

C. Simulation details

The calculations were performed for a system of
moderately nonspherical particles with L =0.5, interact-
ing via a two-site Yukawa potential of the form given in
Eq. (2). The system consisted of N =125 molecules in a
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periodic boundary condition and the basic simulation cell
was a cube of volume V. Particle trajectories were gen-
erated according to the algorithm of Egs. (9)-(12). In or-
der to reduce further the ordering error, the transforma-
tion of Eq. (17) was made by choosing at random (for
each molecule at each time step) one from the six
possible sequences of the rotation matrices:
A, A,A;,A A Ay, ... . During the simulations the
center of mass of the system was fixed.

The screening parameter in the interaction potential
was A=38 and the reduced temperature was T=1, i.e., the
values chose for the spherical particles in Ref. [15]. As
the potential is strongly repulsive a sufficiently small time
step had to be used. The actual value of At in our simula-
tions was 5X 107> [we have checked, for some state
points, that values from the range (1—8)X 1073 did not
change calculated properties].

The simulations were performed for several values of y
and D® and for a range of particle reduced densities
p=N/V or packing fraction ¢=vp [v=m(1+3L)/6 is
the volume of the spheroid approximating the size of the
Yukawa molecule]. For each y and DX the simulations
were started at low density (p=0.05) and after a long
equilibration run of 10° time steps the production simula-
tion of 10°At (i.e., a period of 50 02/D,) was made.
Next, the system was gradually increased to a higher den-
sity, equilibrated for 0.5X 10°A¢ and then the basic run of
10°A¢ was performed from which the averages were cal-
culated. This procedure was repeated until p=0.5.
Long, well-equilibrated, simulations were necessary, par-
ticularly at low densities, to obtain sufficiently good
statistics in order to determine the dynamical properties.
Equations (7) and (8) were used as an additional cross
check of correctness of the program. [In Eq. (8) calcula-
tions were performed for two correlation functions
(DT (0)DT(+)) and (DT (0)D T, (1)) ].

III. RESULTS AND DISCUSSION

First, we consider the rotational motion of the rodlike
particles. Rotational motion of rodlike particles can be
conveniently characterized using the single-particle
orientational time-correlation functions,

C(t)=(P/(e(t)-e(0))) , 21)

where P;(x) is the /th Legendre polynomial. These func-
tions are used, for example, to describe light scattering
from tracer particles [28]. In very dilute solutions the ro-
tational motion is a diffusive process, so that the Debye
rotational diffusion equation is applicable, and which
leads to an exponentially decaying correlation function,

C/(t)=exp[—I(I+1)D¥t] . (22)

In a solution of interacting Brownian particles one ex-
pects that the hydrodynamic and potential interactions
will modify this purely exponential decay. We have stud-
ied the first two orientational correlation functions reex-
pressed from Eq. (22) as
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pi()=—1I(P,(1))/D¥ , 23)
po()=—11n(P,(t)) /D . (24)

The typical time behavior of these functions is plotted in
Fig. 1. This figure shows that initially, both functions, in-
crease linearly with time and are practically indistin-
guishable. Thus, orientational motion over a consider-
able time interval can be well described by the rotational
diffusion equation (for all studied state points this time in-
terval exceeded 0.3). However, at longer times the func-
tions deviate from this analytic form and display a com-
plicated nonlinear behavior. At these relatively long-
times statistical uncertainty is large and it is difficult to
make any quantitative conclusions. Nevertheless, reori-
entational motion over a considerable time interval can
be described well by the rotational diffusion equation.
However, the slope of the functions in the linear regime is
less than unity, which indicates that a modified rotational
diffusion coefficient, DX must be employed in Eq. (22).
The range of the linear region depends on D& and it be-
comes larger as D& becomes smaller (e.g., for DX =1 the
linear region is almost two times larger than for DX =5).
Such behavior clearly indicates that the diffusive charac-
ter of rotation is mainly determined by the forces exerted
by the solvent.

Figure 2 shows also that for an initial, very short but
observable time interval (¢ <0.01), a decrease of the slope
occurs from 1 to DR/DE. Thus, our calculations confirm
the observation made by Bitsanis, Davis, and Tirrell [31]
that initially the particles rotate as in a dilute solution,
i.e., there exists an initial period of unhindered rotation
(for typically 0.25 rad).

The coefficients, D,R, calculated from the slope of the
Py over the time interval 0.02-0.32, are given in Table I
and are displayed graphically in Fig. 3. At low densities,
the coefficients, D,R, decrease linearly with increasing
density and there is weak dependence on the one-particle
diffusion matrix. As density increases the concentration

0.6 1
0.4 ]
0.2 1
] — P
] ———- P
i pf (linear)
]
0.0 T T . T

0.0 01 02 03 04 0.5 0.6
time

FIG. 1. The time evolution of the rotational correlation func-
tions [Egs. (23) and (24)] for a suspension of two-site Yukawa
rodlike molecules at different densities. The broken straight line
is a linear fit to the p, function over the time interval
(0.02-0.32). The results are for p=0.4, D§ =3, y=2.
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FIG. 2. The rotational correlation functions (see Fig. 1) at
short times. The broken and solid lines are Dt+0.001 and
DAt, respectively.

dependence of DX/D& becomes stronger and the depen-
dence on (y,DX) becomes rather more pronounced. A
weak concentration dependence of the rotational
diffusion coefficient, at low densities, has been predicted
by Jones [32] and recently demonstrated experimentally
in a suspension of spherical particles possessing an intrin-
sic optical anisotropy [33]. Our data show, to our
knowledge, for the first time, the dependence of D,R on
the one-particle diffusion matrix in a suspension of mole-
cules.

To derive some insights into the dynamics of transla-
tional motion, the long-time self-diffusion coefficient, D,
was evaluated from the rate of change of the mean square
displacement, W(t)={([R(z)—R(0)]*)/6, of the center
of mass of the tagged particle,

. dW()

Dy tlin; dt .
The D; coefficients are given in Table I. At infinite dilu-
tion D; tends to D, as expected in the absence of many-
body hydrodynamics. At finite concentration the
diffusion process is slowed down by the interaction of the
tagged molecule with the other molecules and the ratio
D, /Dy is less than unity. (The ratio D; /D, is an infor-
mative way of presenting D, , as it goes to unity at infinite
dilution and reduces to the ratio D; /D, as the molecule
tends to a sphere.)

As seen in Fig. 4, the density dependence of D; /D; on
the one-particle diffusion matrix is greater than in the
case of DX. The density dependence for various y, D&
can be quite different even at very low concentrations
(e.g., for densities 0.05 and 0.1). For a given value of DOR,
the ratio D; /D; is a decreasing function of y with the
maximum occurring at Y =0 (i.e., the relative translation-
al diffusivity is most efficient for the isotropic case).

Interparticle potential interactions can have a
significant influence on the tracer diffusivity. Recently, it
has been demonstrated that the self-diffusion coefficient
of colloidal suspensions of spheres increases as the in-
teraction becomes softer [15,34]. In our system, the in-
terparticle interaction becomes harder as the distance be-
tween the two interaction sites is reduced. Thus, one ex-

(25)
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pects that D, /D; will decrease with increase in molecu-
lar anisotropy. Results in Fig. 4 plotting D; /D, against
density confirm this prediction. In the figure, the results
(crosses) for the limiting (extreme) case L =0 (i.e., when
the two interaction sites coincide) are presented. At all
concentrations they are below the results for the ap-

TABLE 1. The Ilong-time translational self-diffusion
coefficients and rotational diffusion coefficients at different den-
sities and for different diffusion anisotropies. The errors for
DX/DE& and D, /D, are estimated to be less than 0.003 and
0.005, respectively. Results are for two-site Yukawa system
with A=8, L=0.5, at T=1. ¢=up is a packing fraction where
u=(7r/6)(1+%L) is the volume of a spheroid approximating
the size of the Yukawa molecule.

P ¢ D Dy x D§ Df/D§ D./D,
0.05 0.0458 1 10 1 1.001 0.89
005 00458 1 2 11 1.000 0.88
005 00458 1 3 1 1 1.001 0.87
005 00458 1 5 2 1 0.999 0.845
0.05 00458 1 5 3 3 1.000 0.86
0.05 00458 1 5 2 5 0.999 0.87
0.10 00916 1 1 0o 1 0.993 0.80
0.10 00916 1 2 4 0.995 0.785
0.10 00916 1 3 1 0.995 0.77
0.10 00916 1 5 3 1 0.997 0.73
0.10 0.0916 1 5 2 03 0.996 0.765
0.10 0.0916 1 5 2 5 0.994 0.77
020 0.1833 1 10 1 0.986 0.63
020 0.1833 1 2 11 0.990 0.62
020 0.1833 1 321 0.992 0.60
020 0.1833 1 5 3 1 0.993 0.55
020 0.1833 1 5 3 3 0.982 0.58
020 0.1833 1 5 3 05 0.970 0.59
030 02749 1 10 1 0.972 0.50
030 02749 1 2+ 0.982 0.48
030 02749 1 3+ 0.984 0.465
030 02749 1 5 3 1 0.989 0.41
030 02749 1 5 2 3 0.962 0.44
030 02749 1 5 3 05 0.949 0.45
0.40 03665 1 10 1 0.950 0.37
040 03665 1 2 L 0.967 0.36
040 03665 1 31 0.970 0.34
040 03665 1 5 2 1 0.982 0.29
040 03665 1 5 3 3 0.924 0.32
040 03665 1 5 % 5 0.900 0.33
0.50 0.4581 1 10 1 0.915 0.26
0.50 04581 1 2 51 0.925 0.255
0.50 04581 1 3 1 0.930 0.24
050 04581 1 5 2 1 0.945 0.19
050 04581 1 5 1 3 0.876 0.21
050 04581 1 5 3 05 0.830 0.23
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FIG. 3. The rotational diffusivity against concentration for
different one-particle diffusion coefficients. (The lines are to
guide the eye.)

propriate Yukawa molecules (y=0,D&¥=1). It is in-
teresting to note (see Fig. 4) that D; of the suspension of
the Yukawa spheres is larger, at all concentrations.
Thus, the D; of one- and two-site Yukawa spheres form
upper and lower bounds, respectively, for the two-site
Yukawa molecule D, /D;.

IV. CONCLUSIONS

We have studied a two-site Yukawa molecular system
obeying Brownian dynamics, which can be considered as
an approximation to a charged rodlike particle suspen-
sion. A feature of our work is that the anisotropic sol-
vent friction is explicitly built into the model. In the
present work, we have concentrated on moderately aniso-
tropic molecules. The self-diffusion translational and ro-
tational coefficients have been calculated for a range of
densities. As has been shown, both properties display
considerable density and molecular anisotropy depen-
dence. Apart from a very short initial time, the rotation-
al motion can be described well, for a considerable time

FIG. 4. Density dependence of the long-time translational
self-diffusion coefficients for different one-particle diffusion
coefficients. +, X [34] are results for suspensions of the Yukawa
spheres. (The lines are to guide the eye.)

interval, by the rotational diffusion equation with a state
dependent rotational diffusion coefficient. It has been
demonstrated how the anisotropy in the solvent-particle
interaction, in the form of one-particle diffusion matrix,
does influence both the rotational and translational
diffusion properties. This indicates that it should be tak-
en into account in any rigorous model of the dynamics of
nonspherical particle dispersions.
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